BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 51 (6), 1891—1892 (1978)

## **Electrochemical Fluorination of Thiols**

Hajime Baba, Kazuo Kodaira, Shunji Nagase, and Takashi Abe Government Industrial Research Institute, Nagoya, Hirate-machi, Kita-ku, Nagoya 462 (Received December 20, 1977)

**Synopsis.** Electrochemical fluorination of  $C_3$  and  $C_4$  thiols has been investigated. Perfluoroalkylsulfur pentafluoride derivatives including new compounds, together with fragmented fluorocarbons and sulfur hexafluoride, have been formed.

Our previous paper¹) showed that electrochemical fluorination of ethanethiol afforded a variety of fluoroalkyl sulfur compounds. As a continuation of this study, the electrochemical fluorination of C₃ and C₄ thiols including branched-chain compounds has been examined in the hope that the effects of branching on the products could be determined.

2-Propane- (I), 1-butane- (II), 2-methyl-1-propane- (III), 2-butane- (IV), and 2-methyl-2-propanethiols (V) have been subjected to the electrochemical fluorination. These were expected to yield perfluoroalkyl derivatives of sulfur hexafluoride, which have received considerable attention because of their unique inertness<sup>2)</sup> and their usefulness as intermediates.<sup>3)</sup>

The extensive breakdown of the thiols occurred, particularly in the carbon-sulfur bond during fluorination, and resulted in the formation of fluorocarbons and sulfur hexafluoride. Even so, a part of the starting materials was converted into the corresponding fully fluorinated analogs, perfluoroalkylsulfur pentafluorides. For example, II produced  $CF_3(CF_2)_3SF_5$  (VI) in 12% yield. IV afforded a perfluoro compound which retained a sulfur pentafluoride group on the secondary carbon,  $C_2F_5CF(CF_3)SF_5^{4}$  (VII), but the yield was poor (2%).

The physical constants and the <sup>19</sup>F and <sup>1</sup>H NMR spectral data of the isolated new compounds are shown in Table 1. These sulfur pentafluorides could be confirmed by their <sup>19</sup>F NMR spectra, which indicated the presence of two differently shielded types of fluorine nucleus bonded to the sulfur in the correct intensity ratio of 1:4 in the regions expected.<sup>5)</sup> The molecular ion peaks for these compounds were undetectable, but such characteristic ions as [M—SF<sub>5</sub>] and [SF<sub>3</sub>] were always found.

In the electrochemical fluorination of a tertiary thiol, V, the formation of the fully fluorinated analog of the starting material could not be confirmed. It yielded the entirely rearranged products, VI and  $(CF_3)_2CFCF_2-SF_5$  (VIII) in low yields ( $\approx 2\%$ ), together with perfluorobutane (42%) and perfluoro (2-methylpropane) (4%).

The secondary thiols also gave isomerized derivatives as well as perfluorinated analogs of the starting materials; CF<sub>3</sub>CF<sub>2</sub>CF<sub>2</sub>SF<sub>5</sub> (IX), (CF<sub>3</sub>)<sub>2</sub>CFSF<sub>5</sub> (X), and C<sub>2</sub>F<sub>5</sub>CH<sub>2</sub>-SF<sub>5</sub> (XI) were isolated in the fluorination of I, and VI and VII in the fluorination of IV. The other branched-chain thiol, III, produced VIII and the straight-chain compound VI. In these cases the amounts of the straight-chain perfluoro derivatives were higher than

those of the branched-chain isomers, the yields of the former being up to 12%. The isomerization by the migration of a methyl or an ethyl group located at a branching site of the chain has been observed in the electrochemical fluorination of branched organic compounds, e.g. amines.<sup>6)</sup>

The low yields of the fluorinated products from the thiols may be attributable partly to the instability of the thiols in anhydrous hydrogen fluoride.<sup>7)</sup> Considerable amounts of polymeric tarry materials and elemental sulfur were always found as deposits on the electrodes and at the bottom of the electrolytic cell.

## Experimental

Materials and Apparatus. The thiols used were commercial chemicals. II (97%) contained a small amount of III. The others were more than 98% pure. The electrolytic fluorination apparatus<sup>8)</sup> and operating procedures<sup>1)</sup> were similar to the ones described previously. The mass spectra were recorded on a Hitachi RMU-7 instrument at 70 eV, the <sup>19</sup>F NMR spectra on a Hitachi R-20B instrument at 56.4 MHz, and the <sup>1</sup>H NMR spectra on a Hitachi R-22 instrument at 90 MHz.

Fluorination of 2-Propanethiol (I). I (25.0 g, 0.328 mol) was added to electrochemically purified anhydrous hydrogen fluoride (400 ml) in the cell. The resulting solution was electrolyzed under the following conditions: anodic current density, 2.6 A/dm² (effective surface area of anodes, 770 dm²); cell voltage, 4.7—6.1 V; cell temperature, 8—10 °C; electricity supplied, 227 A h (670 min); helium flow rate, 60 ml/min.

The products collected in a series of cold traps immersed in ice and in liquid nitrogen were combined (71.3 g) and distilled into four fractions, and each fraction was then subjected to gas-chromatographic analysis (column: 2 m × 3 mm, silica gel; 4 m × 3 mm, Daifl oil 3 (20%) on Chromosorb P-AW). The following compounds were obtained (the compositions were calculated on the basis of the chromatographic peak areas):  $C_1$  and  $C_2$  fluorocarbons (0.9 g),  $SF_6$  (18.8 g),  $C_3F_8$  (30.1 g, 48.8%), n- $C_4F_{10}$  (0.1 g),  $CHF_2C_2F_5$  (1.1 g),  $(CF_3)_2CHF$  (1.2 g),  $CH_2FC_2F_5$  (6.4 g),  $C_2H_5CF_3$  (0.9 g),  $C_2F_5SF_5$  (0.2 g), IX (3.3 g, 3.4%), X (1.7 g, 1.8%), XI (0.8 g, 0.9%), others (unidentified complex mixtures, 5.6 g).

X, MS: m/e 169 [M-SF<sub>5</sub>], 131 [C<sub>3</sub>F<sub>5</sub>], 127 [SF<sub>5</sub>], 119 [C<sub>2</sub>F<sub>5</sub>], 100 [C<sub>2</sub>F<sub>4</sub>], 89 [SF<sub>3</sub>], 70 [SF<sub>2</sub>], 69 [CF<sub>3</sub>]. Found: C, 12.19; F, 76.5%. Calcd for C<sub>3</sub>F<sub>12</sub>S: C, 12.17; F, 77.0%. XI, MS: m/e 241 [M-F], 191 [M-CF<sub>3</sub>], 133 [M-SF<sub>5</sub>], 131 [C<sub>3</sub>F<sub>5</sub>], 127 [SF<sub>5</sub>], 119 [C<sub>2</sub>F<sub>5</sub>], 113 [C<sub>3</sub>HF<sub>4</sub>], 100 [C<sub>2</sub>F<sub>4</sub>], 89 [SF<sub>3</sub>], 83 [C<sub>2</sub>H<sub>2</sub>F<sub>3</sub>], SF<sub>2</sub> [70], 69 [CF<sub>3</sub>]. Found: C, 14.02; H, 0.84; F, 72.4%. Calcd for C<sub>3</sub>H<sub>2</sub>F<sub>10</sub>S: C, 13.85; H, 0.78; F, 73.0%.

Fluorination of 1-Butanethiol (II). II (20.6 g, 0.288 mol) was fluorinated under the following conditions: 2.9 A/dm², 5.8 —8.0 V, 14—15 °C, 151 A h (400 min), helium 60 ml/min. The following compounds were obtained:  $C_1$ ,  $C_2$ , and  $C_3$  fluorocarbons (0.9 g),  $SF_6$  (5.9 g),  $CF_3SF_5$  (0.2 g),  $(CF_3)_3CF$  (0.8 g), n- $C_4F_{10}$  (6.9 g, 10.6%),  $C_2F_5SF_5$  (0.4 g),  $(CF_3)_3CH$ 

TABLE 1. FLUOROALKYL SULFUR COMPOUNDS

| Compound                                  | Source <sup>a)</sup> | Bp <sup>b)</sup> (°C)           | $n_{ m D}^{20}$ | <sup>19</sup> F and H¹ NMR spectral data <sup>e</sup> , d)        |                                                                        |  |
|-------------------------------------------|----------------------|---------------------------------|-----------------|-------------------------------------------------------------------|------------------------------------------------------------------------|--|
|                                           |                      |                                 |                 | Chemical shifts, ppm                                              | Coupling constants, Hz                                                 |  |
| $(\mathrm{CF_3})_2\mathrm{CFSF_5}$        |                      | 43.3                            | <1.28           | $(\mathrm{CF_3}^\mathrm{a})_2\mathrm{CF}^\mathrm{t}\mathrm{SF_5}$ |                                                                        |  |
|                                           | I                    |                                 |                 | Fa 72.2, Ft 150.5,                                                | $F^{a}-SF_{eq}$ 12.8, $F^{a}-F^{t}$ 6.2, $SF_{ax}-F^{t}$ 3.3,          |  |
|                                           |                      |                                 | `               | $SF_{eq} -55.8, SF_{ax} -65.4$                                    | $SF_{ax} - F^{a}$ 1.5, $SF_{ax} - SF_{eq}$ 140.6                       |  |
| $\mathrm{C_2F_5CH_2SF_5}$                 |                      | $\mathrm{CF_3^aCF_2^bCH_2SF_5}$ |                 |                                                                   |                                                                        |  |
|                                           | I                    | 60.0                            | <1.28           | Fa 86.2, Fb 120.1                                                 | $SF_{ax}-SF_{eq}$ 128                                                  |  |
|                                           |                      |                                 | •               | $SF_{eq} = -73.1, SF_{ax} = -75.5$                                |                                                                        |  |
|                                           |                      |                                 |                 | H 4.0                                                             | $H-F^b$ 16, $H-SF_{eq}$ 7                                              |  |
| $(CF_3)_2CFCF_2SF_5$ $C_2F_5CF(CF_3)SF_5$ |                      |                                 |                 | $(\mathrm{CF_3}^a)_2\mathrm{CF^tCF_2}^b\mathrm{SF_5}$             |                                                                        |  |
|                                           | III                  | 69.0                            | <1.28           |                                                                   | $F^{a}-F^{b}$ 10.6, $F^{a}-SF_{eq}$ 5.4, $F^{a}-F^{t}$ 5.2,            |  |
|                                           | $\mathbf{v}$         |                                 | •               | $SF_{eq} = -44.2, SF_{ax} = -62.6$                                | $SF_{ax}-F^{t}$ 1.8, $SF_{ax}-\dot{F}^{b}$ 5.0,                        |  |
|                                           |                      |                                 |                 |                                                                   | $SF_{ax}-SF_{eq}$ 142.7                                                |  |
|                                           |                      |                                 |                 | $\mathrm{CF_3^aCF_2^bCF^t(CF_3^c)SF_5}$                           |                                                                        |  |
|                                           | IV                   | 71.0                            | <1.28           | Fa 79.9, Fb 117.9, Fc 70.6                                        | $F^{a}$ - $SF_{eq}$ 9.3, $F^{a}$ - $F^{t}$ 6.2, $F^{a}$ - $F^{c}$ 3.1, |  |
|                                           |                      |                                 | •               | $F^{t}$ 147.1, $SF_{eq}$ -58.2, $SF_{ax}$ -65.1                   | $SF_{ax} - \overrightarrow{SF}_{eq} 139.2$                             |  |

a) I: 2-Propanethiol, III: 2-methyl-1-propanethiol, IV: 2-butanethiol, V: 2-methyl-2-propanethiol. b) Recorded, uncorrected, at atmospheric pressure. c) CCl<sub>4</sub> solution. Chemical shifts are in  $\delta$  values with respect to CCl<sub>3</sub>F for <sup>19</sup>F and to TMS for <sup>1</sup>H as internal references. d) SF<sub>eq</sub> and SF<sub>ax</sub> indicate equatorial and axial fluorine atoms respectively.

(0.1 g), CF<sub>3</sub>CH<sub>2</sub>C<sub>2</sub>F<sub>5</sub> (0.4 g), VI (9.7 g, 12.3%), others (1.0 g). Fluorination of 2-Methyl-1-propanethiol (III). III (25.0 g, 0.277 mol) was fluorinated; 3.0 A/dm², 4.8—6.0 V, 10—11 °C, 174 A h (455 min), helium 60 ml/min. The following compounds were obtained: C<sub>1</sub>, C<sub>2</sub>, and C<sub>3</sub> fluorocarbons (0.3 g), SF<sub>6</sub> (7.6 g), (CF<sub>3</sub>)<sub>3</sub>CF (2.3 g, 3.5%), n-C<sub>4</sub>F<sub>10</sub> (5.5 g, 8.4%), (CF<sub>3</sub>)<sub>2</sub>C=CF<sub>2</sub> (0.1 g), CF<sub>3</sub>CHFC<sub>2</sub>F<sub>5</sub> (0.2 g), (CF<sub>3</sub>)<sub>3</sub>CH (0.2 g), CF<sub>3</sub>CH<sub>2</sub>C<sub>2</sub>F<sub>5</sub> (0.2 g), IX (0.4 g), VIII (2.4 g, 2.5%), VI (11.7 g, 12.2%), others (0.6 g).

VIII, MS: m/e 219 [M-SF<sub>5</sub>], 150 [C<sub>3</sub>F<sub>6</sub>], 131 [C<sub>3</sub>F<sub>5</sub>], 127 [SF<sub>5</sub>], 119 [C<sub>2</sub>F<sub>5</sub>], 100 [C<sub>2</sub>F<sub>4</sub>], 89 [SF<sub>3</sub>], 70 [SF<sub>2</sub>], 69 [CF<sub>3</sub>]. Found: C, 13.62; F, 76.7%. Calcd for C<sub>4</sub>F<sub>14</sub>S: C, 13.88; F, 76.9%.

VII, 4) MS: m/e 219 [M—SF<sub>5</sub>], 150 [C<sub>3</sub>F<sub>6</sub>], 131 [C<sub>3</sub>F<sub>5</sub>], 127 [SF<sub>5</sub>], 100 [C<sub>2</sub>F<sub>4</sub>], 93 [C<sub>3</sub>F<sub>3</sub>], 89 [SF<sub>3</sub>], 70 [SF<sub>2</sub>], 69 [CF<sub>3</sub>]. Found: C, 13.70; F, 77.1%. Calcd for C<sub>4</sub>F<sub>14</sub>S: C, 13.88; F, 76.9%.

Fluorination of 2-Methyl-2-propanethiol (V). V (24.0 g, 0.266 mol) was fluorinated; 3.2 A/dm², 5.1—6.6 V, 10—12 °C, 172 A h (420 min), helium 60 ml/min. The following compounds were obtained: C<sub>1</sub>, C<sub>2</sub>, and C<sub>3</sub> fluorocarbons (5.3 g),

SF<sub>6</sub> (6.2 g), n-C<sub>4</sub>F<sub>10</sub> (26.4 g, 41.8%), (CF<sub>3</sub>)<sub>3</sub>CF (2.6 g, 4.1%), CF<sub>3</sub>CHFC<sub>2</sub>F<sub>5</sub> (0.9 g), CHF<sub>2</sub>C<sub>3</sub>F<sub>7</sub> (0.2 g), (CF<sub>3</sub>)<sub>3</sub>CH (0.4 g), CF<sub>3</sub>CH<sub>2</sub>C<sub>2</sub>F<sub>5</sub> (2.9 g), n-C<sub>5</sub>F<sub>12</sub> (0.8 g), IX (0.1 g), VI (2.0 g, 2.2%), VIII (0.6 g, 0.7%), others (6.0 g).

## References

- 1) H. Baba, K. Kodaira, S. Nagase, and T. Abe, Bull. Chem. Soc. Jpn., **50**, 2809 (1977).
- 2) For example, Shin-Liang Yu, and J. M. Shreeve, J. Fluorine Chem., 6, 259 (1975).
- 3) Dow Corning Co., Fr. 1512068 (1967); L. A. Loree, U. S. 3456024 (1969).
  - 4) The formula is listed in Ref. 3.
- 5) a) N. Muller, P. C. Lauterbur, and G. F. Svatos, J. Am. Chem. Soc., 79, 1043 (1957); b) M. T. Rogers and J. D. Graham, ibid., 84, 3666 (1962).
- 6) a) T. C. Simmons, F. W. Hoffmann, R. B. Beck, H. V. Holler, T. Katz, R. J. Koshar, E. R. Larsen, J. E. Mulvaney, K. E. Paulson, F. E. Rogers, B. Singleton, and R. E. Sparks, J. Am. Chem. Soc., 79, 3429 (1957); b) V. S. Plashkin, L. N. Pushkina, and S. V. Sokolov, Zh. Org. Khim., 10, 1215 (1974); c) K. Omori, S. Nagase, H. Baba, K. Kodaira, and T. Abe, J. Fluorine Chem., 9, 279 (1977).
- 7) J. H. Simons, "Fluorine Chemistry," Vol. 1, ed by J. H. Simons, Academic Press, New York (1950), p. 239.
- 8) S. Nagase, H. Baba, and T. Abe, Bull. Chem. Soc. Jpn., **40**, 2358 (1967).